APPLIED PHYSICS I
cod. 1004841

Academic year 2024/25
1° year of course - First semester
Professor
Marialaura MARCHETTI
Academic discipline
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Field
Scienze propedeutiche
Type of training activity
Basic
14 hours
of face-to-face activities
2 credits
hub: -
course unit
in ITALIAN

Integrated course unit module: PROPAEDEUTIC SCIENCES I

Learning objectives

The module of "Applied Physics I" has been designed to convey knowledge and understanding of basic physics principles, providing an introductory basis for other disciplines including Chemistry and Biochemistry, Biology, Physiology, etc., that rely on the physical phenomenology on make frequent use of it.
The course will also provide the conceptual basis for understanding a number of major technologies that are used with increasing frequency. In this sense, the module also aims to develop the students' attitude towards independent study and continuing education on the application of physical techniques to several fields.
As its final, but perhaps most important, goal, the course has been designed to stimulate students to become more familiar with certain common concepts, that are not always sufficiently explained in previous studies, such as: mechanical action between bodies in contact, exertion and energy in action, dynamic aspects resulting from elastic force and impact, friction and thermal and thermodynamic aspects, static and dynamic properties of gaseous and liquid fluids.

Prerequisites

- - -

Course unit content

The first part of the module of "Applied Physics I" will deal with the definition of physical quantities and measure systems and units.
The module will then tackle the fundamental principles of kinematics, dynamics, thermology and thermodynamics.
Applications and consequences on human body physiology and medicine will be stressed. In particular, deeper insights will be provided into biomechanics, blood circulation, respiratory system, and body temperature control.

Full programme

Physical quantitites and their measurement: Measurement of a physical quantity - Dimensions and units -Vector quantities.
Fundamentals of dynamics: Principles of dynamics - Energy, work and power - Weight force - Theorem of the kinetic energy - Conservative force fields - Potential energy - Conservation of mechanical energy - Center of mass and its properties -Conservation of the quantity of motion - Moment of force - Overview of rigid body motion - Levers and the human body – Balance - Elastic phenomena, Hooke’s law and elasticity modules - Flexure and torsion - Elasticity of blood vessels and bones.
Waves and acoustics: Wave motion, wave equation and characteristic parameters - Interference and beats - Stationary waves - Resonance - Diffraction and Huyghens principle - Sound and its characteristics - Intensity, sensation, Weber-Fechner law - Doppler effect - Ultrasound and its application in the biomedical field.
Hydrostatics and hydrodynamics: Pressure - Laws of Stevin, Pascal and Archimedes - Atmospheric pressure and Torricelli’s barometer - Arterial pressure and its measurement - Surface tension and Laplace’s formula - Capillarity and Jurin’s law - Gaseous embolism - Pipe flow capacity - Ideal liquid and Bernouilli’s theorem -Implications for blood flow - Real liquids and viscosity - Laminar motion and Poiseuille’s theorem - Hydraulic resistance - Stokes’ equation and sedimentation speed - Turbulent regime and Reynolds number - Overview of cardiac work.
Thermology and thermodynamics: Thermal dilation -Temperature and heat - Laws of gas and absolute temperature - Equation of state of ideal gases and approximation for real gases - Overview of the kinetic theory of gases - Specific heats –Change of state and latent heat - Heat propagation mechanisms.

Bibliography

Classroom notes.

Scannicchio: Fisica Biomedica,
Ed. EdiSES (Napoli).

Lascialfari, Borsa, Gueli: Principi di Fisica per indirizzo biomedico e farmaceutico, Ed. EdiSES (Napoli)

Bersani, Bettati, Biagi, Capozzi, Feroci, Lepore, Mita, Ortalli, Roberti, Viglino, Vitturi:
Fisica biomedica, Ed. Piccin Nuova Libraria (Padova).

Giambattista, McCarthy Richardson, Richardson: Fisica Generale, Ed. McGraw-Hill (Milano).

Teaching methods

During classroom lectures, the topics contained in the program of the
module will be illustrated and commented. Emphasis will be posed on the applications to Biology and Medicine of basic physics principles, with examples of how such principles can lead to quantitative predictions on physiological and pathological phenomena.
In selected cases, the demonstration of basic physics principles will be illustrated, with the aim to introduce the students to the practice of logical thinking and experimental approach.

Assessment methods and criteria

The achievement of the objectives of the modules "Applied Physics I" and "Applied Physics II" will be assessed through a written exam, consisting in three open questions on the topics of the course. This will allow to ascertain the knowledge and the understanding of both the theoretical bases and their practical consequences.
All parts of the written exam will be equally weighted in the final evaluation.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.medicina@unipr.it
T. +39 0521 033700

Quality Assurance Office

Education Manager:
Dr. Claudia Simone

T. +39 0521 033732
Office email didattica.dimec@unipr.it
Manager's email claudia.simone@unipr.it
Course President
Prof. Andrea Bacciu
E. andrea.bacciu@unipr.it

Guidance delegate

Prof. Maria Teresa Berghenti
E. mariateresa.berghenti@unipr.it

Tutor professors

Prof. Andrea Bacciu
E. andrea.bacciu@unipr.it
Prof. Maria Teresa Berghenti
E. mariateresa.berghenti@unipr.it
Prof. Vincenzo Vincenti
E. vincenzo.vincenti@unipr.it
Prof. Enrico Pasanisi
E. enrico.pasanisi@uinipr.it
Prof. Filippo Di Lella
E. filippo.dilella@unipr.it
 

Quality Assurance Manager

Prof. Vincenzo Vincenti
E. vincenzo.vincenti@unipr.it