Learning objectives
1.KNOLEDGE AND UNDERSTANDING.
The main course objectives are:
I)
• to provide students the knowledge of the main technologies for
renewable sources conversion and storage systems, and their best performances.
• to show students some examples of systems to generate, transmit and store energy in the Smart-grids, with special attention to the way energy is produced and stored and to the related issues.
• to give students the knowledge to size and design photovoltaic systems with and without battery banks.
II)
The knowledge of the main technologies of electronic and optoelectronic devices shows how the technological choices affect the final device
performance, in particular:
• device scaling and integration and related issues;
• state-of-the-art MOSFETs, memories, interconnection lines which will
be analyzed from the point of view of materials, technologies and
processes;
• basic operating principles of devices beyond traditional planar CMOS,
as FINFET, strained Silicon , etc. ;
2. APPLYING KNOWLEDGE AND UNDERSTANDING. The student will learn
to use CAD tools for electronic design both at device and system level. In
particular, the student will be able to use the acquired knowledge and
abilities:
I) at system level
• to design and size photovoltaic and storage systems on the basis of
required performance and environmental restriction.
II) at device level
• to model and simulate the thermal and/or electrical and/or optical behavior of an electronic device;
• to analyze the impact of different factors as the geometry, doping, material choice etc. on the final performance of electronic devices;
3. SOFT-SKILLS USAGE. The laboratory activity, usually carried on in small
group, is also a mean to stimulate the student soft skills that is the ability to group working, to interact effectively with coworkers and teacher, to schedule the work and optimize the time required by the activity.
Prerequisites
- - -
Course unit content
I)Introduction to renewable energy source (sun, wind, sea) generation technologies; The solar energy conversion process .
Photovoltaic modules. Silicon Based, thin-film, multijunction solar cells. Organic and dye sensitized cells.
Photovoltaic system - main components: modules, inverter (off-grid and on-grid applications), storage systems, charge controllers. Photovoltaic concentrators. Energy storage systems.
Sizing a PV system. Microgrid and smart grid: main definitions and characteristics.
II) Silicon planar process: the different steps of silicon planar process are analyzed showing the main technological constraints and the improvement capabilities; the CMOS process is studied in detail.The scaling, integration and time to market concepts in semiconductor industry are presented starting from ITRS (International Technology Roadmap for Semiconductors), with special attention to MOSFET devices, semiconductor memories, and interconnection lines and new structures.
III) Advanced CAD tools will be used to:
a) analyze solar cell and power electron device, and
b) design and size photovoltaic and storage systems.
Full programme
I) The solar energy conversion process – photovoltaic conversion, theoretical limits of PV conversion, main definitions, material for photovoltaic applications; (12 hours)
Photovoltaic modules –solar cells based on different technologies will be analyzed both optically and electrically: Silicon, thin film (CdTE, CIGS), multijunction, dye-sensitized and organic cells will be introduced. (6 hours)
Photovoltaic system - main components: modules, inverter (off-grid and on-grid applications), storage systems, charge controllers.
Energy storage systems: chemical (hydrogen), electrochemical (battery), electrical (supercapacitor) and mechanical (flywheel, pumped hydro, compressed air); battery banks for PV stand-alone systems. (12 hours)
Sizing a PV system – system design considerations: site analysis and location, orientation and tilt, shading.
Microgrid and smart grid: main definitions and characteristics.
Photovoltaic concentrators: main definitions and characteristics. (12 hours)
II) Silicon planar process: main steps.
CMOS e SOI processes.
Electronic devices packaging.
Scaling, integration and time to market: Ideal and real scaling: definition, limits and comparison;
Short channel effect: technological and architectural solutions. (6 hours)
III) Advanced CAD tools will be used to:
a) analyze solar cell and power electron device /with Sentaurus -tcad software), (8 hours) and
b) design and size photovoltaic and storage systems (with Matlab/Simulink).(8 hours)
Case Studies and exercises will be carried out.
Bibliography
Topics treated in part I (see section "Contenuti" ):
1)A.Luque and S. Hegedus, "Handbook of photovoltaic science and engineering" , 2.ed , Wiley, 2011.
2) A. Keyhani, "Design of Smart Power Grid Renewable Energy Systems", Wiley, 2011.
3) J. Momoh, “Smart Grid: fundamentals of design and analysis”, Wiley, 2012.
4) R. Zito, "Energy Storage - A New Approach", Wiley, 2010.
Topics treated in part II (see section "Contenuti" ):
5) S.M.Sze, "VLSI technology", McGraw-Hill Book Co., 1983
Books 1) 2) 3) 5) are in the "Engineering and Architecture" library.
Teaching methods
The course is organized in traditional classroom lessons based on the topics listed in the course program section.
The teacher will provide to students excercises on topics illustrated during the theoretical part of the course .
A CAD based laboratory activity directed towards the study and
optimization of solar cell and power electron devices, as well as to design and size photovoltaic systems, will be part of course program.
Assessment methods and criteria
The exam is oral and will verify the knowledge and understanding of the topics presented during the course.
Other information
Slides about arguments treated during the course will be prepared by the teacher and make available to students. The download of slides will be allowed for registered students from http://elly.dii.unipr.it/.
2030 agenda goals for sustainable development
- - -