APPLIED PHYSICS
cod. 1003484

Academic year 2012/13
3° year of course - Annual
Professor
Academic discipline
Fisica tecnica industriale (ING-IND/10)
Field
"discipline fisico-tecniche ed impiantistiche per l'architettura"
Type of training activity
Basic
100 hours
of face-to-face activities
8 credits
hub:
course unit
in - - -

Learning objectives

To introduce the students to the basic concepts of thermodynamics and fluid flow applied to the analysis of the transformation of energy (thermal and mechanical) and of the transfer of thermal energy.

Prerequisites

- - -

Course unit content

Units of measurement basic elements of classical physics:
kinematics and dynamics. Thermodynamics.
Closed and open systems.
Mixtures of air and water vapor.
Fluid dynamics. Heat transfer. The thermal comfort.
Elements of acoustics.

Full programme

Thermodynamics.
Definitions: systems and properties. Units (SI). Closed and open
systems. Forms of energy. First Law. Second law. Entropy. Irreversibility. Closed systems: conservation of mass, conservation of energy. Open systems: definitions, conservation of mass, conservation of energy, steady and transient processes. Properties of pure substances, equilibrium diagrams (p,v) (p,T). Incompressible substances and their properties. Vapours: quality and other properties. Ideal gas. Vapor power cycles: Rankine cycle, ideal cycle, reheat. Refrigeration vapour cycle. Coefficient of performance. Thermodynamic efficiency. Simple multicomponents systems. Ideal gases mixtures.
Mixtures of air and water vapour.
Thermodinamic properties of humid air: specific and absolute humidity, specific entalphy. Psicrometric chart. Dew point temperature. Dry and wet bulb temperature. Psicrometer.
Fluid flow.
Physical aspect of the fluid flow. Coefficient of viscosity. Laminar and turbulent flow. Boundary layer. Reynolds number. Fluid flow in pipes. Integral equations Energy bilance equation. Bernoulli equation. Friction losses. Velocity and mass flow rate measurements in fluids. Compressible fluids. Mach number.
Heat transfer.
Conduction. Fourier law. Steady state conduction. Electrical analogy. Convection. Dimensional analysis. Thermal boundary layer. Forced, natural and mixed convection. Thermal radiation. Definitions. Laws of thermal radiation: Plack's law, Stefan-Boltzmann law. View factor. Applications to thermal radiation heat transfer between black and grey surfaces. Overall heat transfer coefficient.
Themal Comfort.
Human thermoregulation. Energy balance. prediction of thermal comfort. Enviromental indices. Elements of acoustics.
Fundamental acoustic quantities. The propagation of sound outdoors and in confined environments. Acoustic properties of materials and buildings.

Bibliography

CENGEL YUNUS A., TERMODINAMICA E TRASMISSIONE DEL CALORE,
MCGRAW-HILL.
PAOLA RICCIARDI, ELEMENTI DI ACUSTICA E ILLUMINOTECNICA, MCGRAWHILL.

Teaching methods

The course is divided into lectures and tutorials, which are an opportunity to assess
and clarify the theoretical knowledge acquired.

Assessment methods and criteria

Written and oral examination.

Other information

- - -