SPECTROSCOPY
cod. 00910

Academic year 2008/09
3° year of course - Second semester
Professor
Academic discipline
Fisica della materia (FIS/03)
Field
A scelta dello studente
Type of training activity
Student's choice
32 hours
of face-to-face activities
4 credits
hub:
course unit
in - - -

Learning objectives

Present the various spectroscopic techniques in a unified conceptual picture. Give general physical fundamentals, give some simple concrete examples, and show some interesting state-of-the-art applications. <br />

Prerequisites

- - -

Course unit content

<br />Space-time scales; structure and dynamics of physical systems. Brief introduction to the formalism of stochastic processes and the associated statistical mechanics. Correlation functions and response functions. Wiener-Khintchin theorem. Examples of correlation functions that are measured with various spectroscopic techniques. Light scattering: Rayleigh, quasi-elastic and Brillouin scattering. Inelastic light scattering: Raman spectroscopy; phenomenology, experimental techniques, theoretical foundations, some applications. Absorption and fluorescence spectroscopy: phenomenology, experimental techniques, effect of electron-vibration interaction on the optical properties of materials. Neutron spectroscopy: introduction, phenomenology, theoretical foundations, experimental techniques regarding diffraction, small angles, inelastic and quasi-elastic scattering. Application to the study of diffusive motions on a microscopic scale in water, aqueous solutions, complex molecular systems. 

Full programme

- - -

Bibliography

Lecture notes

Teaching methods

Lectures, exercises, period of laboratory training; oral exam.

Assessment methods and criteria

- - -

Other information

- - -