DYNAMIC ANALYSIS AND SEISMIC DESIGN OF STRUCTURES (UNIT 2)
cod. 1003934

Academic year 2018/19
2° year of course - Second semester
Professor
Academic discipline
Tecnica delle costruzioni (ICAR/09)
Field
A scelta dello studente
Type of training activity
Student's choice
48 hours
of face-to-face activities
6 credits
hub:
course unit
in

Integrated course unit module: DYNAMIC ANALYSIS AND SEISMIC DESIGN OF STRUCTURES

Learning objectives

• Knowledge and understanding:
Aim of the course is to provide the fundamentals for the design of reinforced concrete, masonry building under seismic actions.

• Applying knowledge and understanding:
The main skills that students should acquire at the end of the course are:
o Achievement of good ability in the structural concepts of new civil buildings subject to seismic action;
o Achievement of sufficient sensitivity to the main issues related to seismic retrofitting techniques of existing buildings;

• Making judgements:
The design and verification of structures performed with the aid of calculation codes has become current practice nowadays. The complexity of computer codes and number of structural verifications required by regulations may be a source of significant computational and conceptual errors. The student will therefore govern the procedure adopted in the current design practice, with a constant link between the theoretical knowledge and the practical applications making use of analytical calculation for the control of the results obtained with software.

Communication skills:
The confidence gained through a constant connection between theoretical knowledge - structural modelling with finite-element programs - control of the results obtained with simplified analysis of the structural response, will allow the student to possess the necessary skills for results presentation.

Learning skills:
The student will have to design a reinforced concrete building and a masonry building. The revisions of the calculation reports that will be performed during the preparation of the student final exam will allow to check the ability of student learning.

Prerequisites

It is useful the theoretical knowledge of the calculation of internal actions in frame buildings subjected to static and dynamic actions with calculation methods, either manual or numeric (it is believed that this knowledge can be gained in Module A of the same course).

Course unit content

The Module 2 of the course treats the fundamentals of structures design under seismic actions. The contents of the course are listed below.

Full programme

• Preliminary concepts of civil engineering seismology and methods of measurement of seismic motion;
• Spectral response analysis: example of static and dynamic analysis for 2D frames;
• Ductility, criteria for structural regularity and behaviour factors;
• Capacity design approach;
• Combination of the seismic action with other actions, limit state verifications;
• Design and detailing of reinforced concrete frames;
• Modelling of reinforced concrete frames through finite element codes;
• Design and detailing of reinforced concrete wall systems;
• Design and verification of foundations and diaphragms;
• Existing reinforced concrete buildings: push-over analysis (theory and applications);

• Seismic behaviour of masonry structures;
• Design and detailing of masonry buildings: theory and applications;
• Out-of-plane failure mechanisms in masonry buildings: theory and applications;
• Specific issues for existing and historical masonry buildings;
• Characterization of soil mechanics and verifications of foundations and soil;
• Design and detailing of reinforced concrete precast buildings;
• Retrofitting techniques for existing precast buildings;
• Current codes and calculation reports in compliance with national and regional norms;

Bibliography

- Recommended texts:
T.PAULAY, M.J.N. PRIESTLEY, "Seismic Design of Reinforced Concrete and Masonry Buildings", John Wiley & Sons, INC.
CHOPRA, A.K., “Dynamics of Structures”, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics.
GHERSI, A. e LENZA P., Edifici antisismici in cemento armato, DARIO FLACCOVIO EDITORE, 2010.
GHERSI, A., LENZA P. e CALDERONI, B., Edifici in muratura alla luce della nuova normativa sismica, DARIO FLACCOVIO EDITORE, 2011.

- Further texts:
R.W. CLOUGH – J. PENZIEN: “Dynamics of structures”, McGraw-Hill, New York, 1993.
COMO, M., Statica delle costruzioni storiche in muratura, ARACNE editrice, 2011.
PODESTA’, S., Verifica sismica di edifici in muratura, DARIO FLACCOVIO EDITORE, 2012.

All the teaching material is available via the portal “Web LEArning in Ateneo” (LEA UNIPR).

Teaching methods

The course consists of lectures, course materials can be downloaded from the portal "Web LEArning in Ateneo". Some exercises will be carried out during the course to enable students to practice with structural analysis of buildings under seismic actions. Some seminars are organized by inviting engineers working in the field of earthquake engineering in order to enable students to approach the world of work, which is awaiting them.

Assessment methods and criteria

The students will have to design a reinforced concrete building and a masonry building. The examination consists in the presentation of the calculation reports and an oral discussion with the teacher. The level of students learning can be measured as follows:

Reinforced concrete building report: 50% divided as follows:
15% conceptual design;
10% skill in modelling;
10% mastery in results analysis;
10% check of numerical results with analytical calculations;
15% knowledge of theory.

Masonry building report: 50% divided as follows:
15% conceptual design;
10% skill in modelling;
10% mastery in results analysis;
10% check of numerical results with analytical calculations;
15% knowledge of theory.

Other information

It is strongly recommended to attend lessons.