ENVIRONMENTAL AND COASTAL HYDRAULICS (MODULE 1)
cod. 1006782

Academic year 2018/19
2° year of course -
Professor
Academic discipline
Idraulica (ICAR/01)
Field
Ingegneria civile
Type of training activity
Characterising
48 hours
of face-to-face activities
6 credits
hub:
course unit
in

Integrated course unit module: Environmental and Coastal Hydraulics

Learning objectives

Knowledge and ability to understand:At the end of the course of the course the student will have to know the main theoretical aspects for the study of coastal processes.Skills:The student must be able to describe the physical process with the use of mathematical analysis; to identify the process parameters by separating them from the variables; to solve the application cases, carrying out checks to the advantage of security.Autonomy of judgment:The student must possess the tools to critically evaluate the applicability of the acquired models or the need to resort to more advanced and detailed models.Communication skills:The student must possess the ability to clearly present the results of the analysis, both orally and in writing, also through the use of tables and graphs.

Prerequisites

Hydraulics, Differential analysis, Geometry, Rational Mechanics, Physics.

Course unit content

The course provides the student with advanced concepts of Hydraulics and Fluid Mechanics in coastal processes. The student is able to solve some technical problems of Environmental Hydraulics, with the application of conceptual models, numerical and physical models. Five numerical exercises are planned in order to concretely demonstrate some aspects of the topics covered. A visit to the Hydraulics laboratory is scheduled.

Full programme

6 CFU common to students of Civil Engineering (I module) and Engineering for the Environment and the Territory, total 42 hours of lectures
Lesson 1: Chapter 1 - Physical oceanography, 1.1 General knowledge, 1.2 ldrosphere, 1.2.1 Sea level, 1.2.2 Determination of the average sea level, 1.2.3 Surveyof the sea floor, 1.3 Sea water, 1.4 The Nautical Charts (13 pp.)

Lesson 2: Chapter 2 - Generation and characteristics of the winds - Traverses, 2.1 Introduction, 2.2 Definitions, 2.3 Wind generation, 2.4 Geostrophic wind. Gradient wind. Real wind, 2.5 Wind on the surface for wave prediction, 2.5.1 Trend of the long vertical velocity, 2.5.2 Correction for air-sea temperature difference, 2.6 Wind force factor (14 pp.)

Lesson 3: Chapter 3 - Information on winds and waves, 3.1 Introduction, 3.2 Wind field on the wave generation area Definition of fetch, 3.3 Wind field evaluation, 3.3.1 Wind direction, 3.3.2 Wind speed, 3.3.3 Wind duration, 3.3.4 Fetch length, 3.4 Evaluation of wind characteristics, 3.5 Wind and sea data in Italy, 3.5.1 Collecting anemological data, 3.6 Data availability for waves (15 pp.)Lesson 4: Chapter 4 - Wind-generated waves, 4.1 Wind-wave generation, 4.2 Sea wave surface, 4.3 Wave-length distribution function, 4.4 Wave-wave distribution function (12 pp.)

Exercise 1: calculation of fetch, effective fetch. Calculation of wave height based on wind data. Reconstruction of wave and wind statistics: dominant wind, reigning.

Lesson 5: 4.5 Wave energy spectrum

Bibliography

Slides of the lectures
Tomasicchio, U., 1998. Port and Coastal Engineering Manual, BIOS, ISBN 88-7740-243-1
Insight:
Longo, S., 2011. Notes on Maritime Hydraulics - Part 1. Eliophototecnica Barbieri Parma, ISBN 978-88-64450-18-6
Longo, S., 2011, Dimensional Analysis and Physical Modeling - Principles and Applications in Engineering Sciences. Springer & Verlag Italy, UNITEXT Engineering Series. ISBN 978-88-470-1871-6

Teaching methods

The theoretical part of the course will be illustrated through lectures using a tablet PC connected to a video projector, used as an electronic board. The lectures will be complemented by educational videos. A part of the course is reserved for analytical and numerical exercises.

Assessment methods and criteria

The examination is based on an oral exam. Three questions for a maximum 0.5 h.Evaluation elements: theoretical questions (knowledge and understanding), 50%; application of the theory or application examples (skills, independence of judgment), 35%; exposure properties (communication skills), 15%.
The vote is in thirties.

Other information

Lectures attendance is highly recommended.