INDUSTRIAL ORGANIC CHEMISTRY
cod. 1006003

Academic year 2017/18
1° year of course - First semester
Professor
Academic discipline
Chimica industriale (CHIM/04)
Field
Discipline chimiche ambientali, biotecnologiche, industriali, tecniche ed economiche
Type of training activity
Characterising
48 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

The course is aimed at:
-provide basic knowledges on the main processes of organic industrial chemistry for the production of intermediates and fine chemicals
- provide in-depth knowledges on the catalytic strategies of advanced industrial synthesis of fine chemicals
- provide detailed explanation of the chemical and catalytic mechanisms involved
- provide a first approach to environmental and safety issues related to the production of chemical derivatives on an industrial scale.


Conceptual tools are provided for a critical understanding of industrial catalytic processes with regard to:
- choice of process, reagents, catalysts and technology
- evaluation of total costs
- environmental and safety issues.

The acquisition of a formally correct language is required, the ability to express content in a clear and linear way is encouraged.
The links between the different parts of the course and with courses already followed by the students in previous years and in the current year are highlighted, with particular reference to the contents of organic, industrial and metallorganic chemistry.
The acquired knowledge and the ability to understand the concepts treated are verified through the oral examination during which the student must demonstrate that he has understood the chemical processes treated and that he can compare and discuss them in an independent and critical way.

Prerequisites

-

Course unit content

Oxidation processes: how to use oxygen; hydrogen peroxide and others
simple oxidants; role of the metals; homogeneous and heterogeneous
catalysis of the oxidation processes of organic substrates; how to protect
products and materials from the harmful effect of oxygen; catalyst
design.
Hydrogenation processes: use of hydrogen and hydride transfer in
homogeneous catalysis; asymmetric catalysis; use of hydrogen in
heterogeneous catalysis.
Halogenation processes: chlorination, oxychlorination and fluorination.
Oxidation-reduction processes (electrochemical): new technology in
electrochemical processes in organic solvents with particular regard to
the duplication of acrylonitrile; techniques of oxidation and reduction with
chemical reagents that revert to the initial oxidation state
electrochemically. Carbonylation processes: metal carbonyls; catalysis of the introduction of
carbon monoxide into organic substrates to form aldehydes, ketons,
acids and esters. Carboxylation processes: direct introduction of carbon dioxide into
organic molecules. Formation of C-C bond processes: catalysis of cyanation, dimerization,
oligomerization and metathesis of unsaturated substrates.

Full programme

- - -

Bibliography

K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH,
Weinheim, 4th ed., 2003.
G.P. Chiusoli, P.M. Maitlis, Metal-catalysis in Industrial Organic Processes,
RSC Publishing, 2008.
J. Hagen, Industrial Catalysis, Wiley-VCH, 1999.
P.W.N.M. van Leeuwen, Homogeneous Catalysis, Kluwer Academic
Publishers, 2004. G.C. Bond, Heterogeneous Catalysis, Oxford University Press, 1987.

Teaching methods

The course takes place in 48 hours of lessons, during which the students learn the contents of the course. The slides used during the lessons and other supporting material will be uploaded every week on the Elly platform. Registration for the online course is required to download the slides. The slides are considered an integral part of the teaching material. Non-attending students are reminded to check the available teaching materials and the indications provided by the teacher through the Elly platform. The teacher is available by appointment (e-mail) for further explanations.
During the course one or more seminars of experts and visits to chemical plants will be scheduled and promptly communicated to the students.

Assessment methods and criteria

The assessment of learning takes place through a written test followed by an oral test, during which the student must demonstrate
1) to have studied and understood the industrial chemical processes
2) to be able to compare and discuss independently and critically the processes: for e.g. new and older processes
3) to use a correct language to describe the processes
4) to be able to find connections between the contents of other courses: for e.g. to explain the reaction mechanism of an industrial process using the skills acquired in the Organometallic course


The written examination consists of 10 questions concerning all the topics of the course. Each question has a specific maximum score ranging from 1 to 3.
The score obtained is communicated to the student before access to the oral examination. Minimum total score to be admitted to oral examination is 13.
The oral exam includes the discussion of any missing or incorrect answer, and of a complex catalytic process chosen by the teacher (multistep reactions, enentioselective reactions) and assigns a total score ranging from 0 to 5.
The laude is assigned in the case of a score over 30 only if the candidate demonstrates the ability to argue critically and the ability to connect the different parts of the course. The skills of synthesis, use of a correct technical language and communication will be evaluated positively.

Other information

- - -