GENERAL PHYSICS
cod. 1002187

Academic year 2018/19
2° year of course - First semester
Professor
Academic discipline
Fisica sperimentale (FIS/01)
Field
Fisica e chimica
Type of training activity
Basic
48 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

This course aims to provide the student with the base knowledge concerning electrostatics and electromagnetism.


Knowledge and understanding:
At the end of the course the student will learn the fundamental phenomena of classical electromagnetism and the laws governing them. It will also be able to solve simple problems related to the topics covered.
Knowledge and applied understanding skills:
The student must be able to analyze electromagnetic phenomena and interpret them on the basis of a mathematical formulation of the physical laws. We will use demonstrations in the classroom to illustrate experimentally the most significant phenomena.
Autonomy of judgment:
At the end of the course, the student must possess the tools to understand the physical phenomena of an electromagnetic nature.
Communication skills:
The student must possess the ability to clearly explain the basic concepts of electromagnetism and to interpret many observable phenomena on the basis of these.
Ability to learn:
The student must have acquired the learning skills of electromagnetism that are necessary for him to undertake further studies with a high degree of autonomy.
Classroom exercises are planned, under the supervision of the teacher. Students are also required to perform
weekly exercises at home on the topics covered in class.

Prerequisites

Course of General Physics 1

Course unit content

Electric charge - Laws of electrostatics - The electric field - Charged particles in an electric field - Gauss Law and its applications - Electrostatic properties of conductors - Electric potential energy - Electrical potential - Relationship between field and potential - Capacitance and capacitors - Capacitors in series and parallel - Electrostatic energy - Dielectrics - Current and Resistance The resistance and Ohm’s laws - The Drude model
- Semiconductors - Series and parallel resistors - Amperometers e
voltmeters
Direct current circuits Batteries - Electricity -
Kirchhoff Laws - RC circuits
Magnetostatic History - Magnetic field - Principle of superposition - Experiments of Oersted, Ampère, Biot and Savart - Strength
of Lorentz - Force on a wire supporting current - Demonstration: forces
between magnets and currents - Non existence of magnetic monopolies - Law of Ampere and amperian currents - Applications of Ampère's theorem: wire
current path, solenoid, current in the plane – Mass spectrometer - Galvanometer - Strength between two wires crossed by current - Field of
one turn: magnetic moment - Magnetic dipole field - Motion of
charged particles in the magnetic field - Demonstration: parasitic currents
Electromagnetic induction Faraday-Lenz's law - Electromotive induced force- Oscilloscope demonstration - Engines and generators - Transformers and inductances - Coefficient of mutual induction
- Self-induction - Magnetic energy and energy density.
Alternating currents: RL circuit - Forced oscillations in a LC circuit - Energy balance in the RLC circuit - Analogy between RLC circuit and damped mechanical oscillator (pendulum, spring).
Maxwell equations. The displacement current - The Maxwell equations
- The oscillating circuit and the antenna - Electromagnetic radiation -
Energy flow and Poynting vector - Radiation pressure and
intensity of radiation
Waves: Waves in elastic media: waves on the strings, on the surface of water, sound waves - Wave function - Phase, wavelength, period, wave vector and frequency - Dispersion relation and phase velocity - Wavefront - Huygens Principle - Interference phenomena -
Wave equation and its derivation from the Maxwell equations in vacuum.

Full programme

see the course web site: http://www.fis.unipr.it/fisica2ricco/

Bibliography

W.E. Gettys, F.J. Keller, M.J. Skove, Fisica classica e moderna 2. McGraw-
Hill Libri Italia, Milano, 1998

Teaching methods

Theoretical lessons will be completed with practical ones consisting into
the assisted solution of exercises on the treated arguments. Two written tests are also planned during the course
that can (if carried out successfully) constitute an integral part of the final exam

Assessment methods and criteria

The students who constantly attend the lessons and get a pass on the
infra annum tests, can take a simplified final exam. The others will have
to take a complete one which consists of a written and, if required, an
oral test.

Other information

For further information and to see the results of the tests and exams see the course web site: http://www.fis.unipr.it/fisica2ricco/