PHYSICS AND TECHNOLOGY OF MATERIALS
cod. 1005456

Academic year 2017/18
2° year of course - First semester
Professor
Academic discipline
Fisica della materia (FIS/03)
Field
Attività formative affini o integrative
Type of training activity
Related/supplementary
52 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in - - -

Learning objectives

1) Acquiring a good knowledge of growth technologies for polycristals, single crystals, epitaxial films and nano-structures.
2) Ability of choosing the technology to be applied to different material categories
3) Critical assessment of materials characteristics as a function of preparation parameters
4) Ability in planning experiments in order to minimize occurrence of defects and improve the performance of the material of interest.

Prerequisites

Basic knowledge of solid state physics, chemistry and thermodynamic.

Course unit content

Novel materials for advanced technology; Fundamentals of crystal growth; Growth methods for single crystals, thin layers and nanostructures; relationships between growth parameters and material properties.

Full programme

Introduction; Novel materials als key to new Technologie; examples.

Natural crystals and syntetic crystals; crystals' requirements for technological applications (purity, crystallographic perfection, doping.

Relationships between chemical composition, structure and physical properties. Tailoring of properties via impurity incorporation.

Dimension of crystalline materials as degree of freedom in view of unusual physical characteristics (nanostructures.

Fundamentals of Crystal growth; definition of phase transitions; Nucleation; Thermodynamic and kinetic aspects.

Flowdynamic in Crystal grwoth from the melt; concept of boundary layer; segregation phenomena; distribution of impurities within crystals and layers.

Growth techniques for bulk crystals (from the melt, solution, vapour.

Thin films growth; (molecular beam epitaxy, liquid phase epitaxy, vapour phase epitaxy, sputtering, laser ablation.

Mismatch between films and substrates; strained heterostructures and relaxation.

Formation of extended and point defects; classification of defects and strategies for lowering the defect density; "useful" defects.

Typical growth technology for technologically-important crystals (organic and inorganic semiconductors, laser crystals, functional oxides, etc).

Preparation and applications of Nanostructures.

Metamaterials and their applications.

Bibliography

Lecture notes provided by the teacher; D.T.J. Hurle (Ed.), Handbook of crystal growth (6 volumi), Elsevier 1993; R. Fornari e C. Paorici Eds, Theoretical and technological aspects of crystal growth, Trans Tech Publ 1998; I.V. Markov, Crystal growth for beginners, World Scientific 2003;E.A. Irene, Electronic materials science, Wiley 2005; M. Noginov and V. Podolskiy Eds, Tutorials in Metamaterials, CRC Press 2012

Teaching methods

Blackboard lectures supported by audio-visual materials

Assessment methods and criteria

Oral examination including:

- Short seminar (max 15 min) on a topic chosen among those presented in the course

- Questions on the different topics in order to check the general confidence of the student with the concepts treated during the course

Final mark will be based for 1/3 on the seminar and 2/3 on the oral examination.

Other information

Additional activities:

Visit of IMEM-CNR labs and growth experiments for bulk crystals and thin films;

Discussions on innovative materials for advanced technologies.