REINFORCED CONCRETE
cod. 1004649

Academic year 2013/14
1° year of course - Second semester
Professor
Academic discipline
Tecnica delle costruzioni (ICAR/09)
Field
Ingegneria civile
Type of training activity
Characterising
63 hours
of face-to-face activities
9 credits
hub:
course unit
in - - -

Learning objectives

Knowledge and understanding:
Knowledge of the mechanical behavior of concrete structures and theoretical models to describe them.

Knowledge of code rules (Euroceods2) for the design of reinforced concrete structures. Knowledge of the detailing and arrangement of reinforcement in the main structural elements.

Skills:
Ability to choose, arrange and pre-design the different structural elements that constitute a simple reinforced concrete building. Ability to write the report and to draw the reinforcements.

Making judgments:
The student must be able to choose and set the proper dimensions of structural elements

Communication skills:
During the course the student should improve his technical dictionary.

Learning skills:
The student must acquire the ability to select the most appropriate design choices also considering options that are not perfectly identical to those given during the course. He will also be able to consult the main reference books of the field

Prerequisites

Basis concepts on stress analysis, strenght of material, reinforced concrete design

Course unit content

Theoretical aspects and practice for the design of reinforced concrete structures

Full programme

1) Mechanical properties of concrete: compressive and tensile strenght, modulus of elasticity, combined stress behavior.

2) Steel reinforcement: monotonic stress-strain law, yield stress, bond characteristics.
3) Design methods. Allowable Stress Design, Ultimate Strenght Design and Limit States Design.
4) Characteristic and design actions, partial safety factors, load combinations
5) ULS for flexure and axial load. Strain diagram at ultimate limite state. Ultimate tensile and compression axial load. Members subjected to flexure. M-N interaction diagrams. Biaxial bending and axial force.
6) ULS for shear. Member not requiring shear reinforcement, standard method, variable strut inclination method. Dimensioning of web reinforcement and detals.
7) ULS for torsion. Behaviour of solid and thin-walled cross-section, variable angle truss mode, combined shear and torsion.
8)Serviceability limit states. Control of stress. Cracking axial load and bending moment. Stabilized cracking and crack spacing. Tension stiffening. Control of cracking and evaluation of crack width. Bending moment-curvature diagram, checking deflection.
9)Detailing of reinforcement. Spacing bars, anchorage of reinforcement, laps and mechanical couplers. Bundled bars.
Detailing of members. Minumum reinforcement, details of anchorage, regions with discontinuity in geometry and action.
10)Columns, beams, slabs, walls, deep beams, footings.

10) Prestress: prestressing cables pre-tensioned and post-tensioned, external prestressing, equivalent actions. Resolution of statically indeterminate beams prestressed cable, concurring.
Loss of prestressing: release of the strands, friction, return of anchors, shrinkage, creep, relaxation of prestressing steel.

11) Creep and shrinkage: behavior of concrete over time, superposition in time, AAEM method, stress distribution in columns, prestressed beams and composite beams, time behavior of continuous beams, isomorphism theorems.
12) Mixed steel-concrete structures: notes on the ULS and SLS design

13) Structural Analysis: strut and tie models for the design of corbels, walls, nodes, beam-column joints.

14) Structural analysis: linear elastic analysis with and without redistribution, plastic analysis, nonlinear analysis,
15) Plates : fundamentals of design and arrangement of reinforcement.

Bibliography

Reccomended:
[1] UNI-EN 1992-1-1:2005, "Eurocodice 2- Progettazione delle strutture in calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici", 2005.

SLides of the course are available on lea.unipr.it
Further readings:
[2] D. Ferretti , I. Iori, M. Morini " La stabilita`delle strutture: il caso delle costruzioni in cemento armato", McGraw-Hill Italia, 2002.
[3] E.F. Radogna "Tecnica delle costruzioni ", vol.2 , Zanichelli, 2000.
[4] R. Favre et al., Progettare in calcestruzzo armato : piastre, muri, pilastri e fondazioni , Milano, Hoepli, 1994.
[5] Aicap, "Guida all'uso dell'Eurocodice 2", vol.1, AICAP, Roma, Edizioni Pubblicemento, 2006.
[6] R.P. Johnson, "Composite structures of steel and concrete", Wiley and SOns ltd, 2004
[7]R. Lancellotta, J. Calavera, "Fondazioni", Mc Graw-Hill, 2003
[8] A. Migliacci, "Progetti di strutture", CEA, 1991

Teaching methods

Frontal lectures, Excercises, Design project

Assessment methods and criteria

Written and oral examination with discussion of the design project

Written (2/3)
Knowledge of the topics of the course (50%);
Ability to solve an exercise similar to the one explained during the class (50%)
Oral - discussion of the project (1/3)
Knowledge of the topics of the course (60%); Communication skills (10%); Judgement ability (30%)

Other information

- - -