OLEODYNAMICS AND PNEUMATICS + EXPERIMENTS ON MACHINERY
cod. 1002358

Academic year 2011/12
2° year of course - First semester
Professor
Academic discipline
Macchine a fluido (ING-IND/08)
Field
Ingegneria meccanica
Type of training activity
Characterising
72 hours
of face-to-face activities
9 credits
hub:
course unit
in - - -

Learning objectives

The course main goal is to give to the student the comprehension and the possession of the fluid power basic principles. The course presents the analysis of both fluid power components and systems; few elements of pneumatics are also introduced.
The main components of hydraulic circuits are presented, focusing on the working principles and the design criteria. Several hydraulic circuits are analyzed, taking remark from the most common industrial applications.

Prerequisites

- - -

Course unit content

The fluid power basic principles. Fluid power components and systems. The main components of hydraulic circuits are presented, focusing on the working principles and the design criteria. Several hydraulic circuits are analyzed, taking remark from the most common industrial applications.

Full programme

Introduction to fluid power: hydraulic and pneumatic systems
Physical properties of hydraulic fluids (density, viscosity, bulk modulus). Contamination of the fluid (in form of liquid, gas or solid).
ISO fluid properties classifications.
Hydraulic symbols. ISO1219 specifications: basic symbols and combinations. Representation of pumps, motors, actuators and control elements.
Pumps
Pump classification. Positive displacement pumps. Different designs and main ideal characteristics. Pump torque and actual characteristics: volumetric and hydro-mechanical efficiency. The pump flow and pressure ripple.
Control components in hydraulic systems
Types of drives.
Directional control valves. Rotative spool control valves. Overlap: definition and effects on the valve behaviour. On/off and proportional control valves. Check valves.
Pressure control valves. Direct acting and hydraulically piloted relief valves. Actual and ideal flow characteristics. Sequence valves. Differential and proportional valves. Pressure reducing valves. Piloted valves: different solutions. Flow control valves. Orifices, compensated flow regulators, flow dividers and combiners Two ways and three ways flow control valves.
Pump groups
Constant flow rate pump group. Flow-pressure characteristics. Alternative solutions.
Discrete values variable flow rate pump group. Flow-pressure characteristics and evaluation of the group efficiency. Use of a remote piloted relief valve.
Variable flow rate pump group. Flow-pressure characteristics.
Fixed pressure pump group. Flow-pressure characteristics. Pump group with accumulators.
Hydraulic uses
Linear actuators. Resistive and dragging load. Basic circuit for simple effect and double effect linear actuators. Choice of different types of control valves (closed centre, open centre, ..). Force – speed charts. Control of the dragging loads: counterbalance and overcentre valves.
Control of the actuator speed by regenerative circuits. Automatic transition to the regenerative solution.
Multiple load systems. The series, parallel and tandem configurations. Synchronism between several actuators.
Compensating and metering orifices. Flow dividers: a few examples. Multiple actuators with priority systems.
Load Sensing Systems
Load sensing system controlling several units: advantages and drawbacks. LS systems with fixed and variable displacement pumps. Energy saving and controllability of LS systems . Pressure compensators.
Hydrostatic transmissions
Working principles and application field. Open circuit and closed circuit hydrostatic transmissions. Elements of a closed circuit HT.

Bibliography

N. Nervegna, 2003, “Oleodinamica e Pneumatica”, 3 volumi, Politeko, Torino
H. Speich, A. Bucciarelli, 2002, “Manuale di Oleodinamica – Principi, componenti, circuiti e applicazioni”, Tecniche nuove, Milano
Autori vari, 2007, “Hydraulics in Industrial and Mobile Applications”, ASSOFLUID
J.S. Stecki, A. Garbacik, “Design and Steady-state Analysis of Hydraulic Control Systems”, Fluid Power Net Publications
G.L. Zarotti, “Circuiti Oleodinamici – nozioni e lineamenti introduttivi”, CEMOTER – Quaderni Tematici
Figliola R.S. & Beasley D.E., 1995, Theory and design for mechanical measurement, 2nd edition, J. Wiley & sons
Doebelin E. O., 1990, Measurement System – Application and Design, 4th edition, McGraw-Hill.
Berta G.L. & Vacca A., 2004, Sperimentazione sui motori a combustione interna, Monte Università Parma, collana Saperi
G.L. Zarotti, “Oleodinamica Termica – nozioni e lineamenti introduttivi”, CEMOTER – Quaderni Tematici
G.L. Zarotti, “Trasmissioni Idrostatiche” IMAMOTER – Quaderni Tematici
J.F. Blackburn, G. Reethof, J.L. Shearer, “Fluid Power Control”, The M.I.T. Press
Mannesman – Rexroth, “Basic Principles and Components of Fluid Technology”, Rexroth Hydraulics
D. McCloy, H.R. Martin, “Control of Fluid Power: Analysis and Design” John Wiley & Sons
A. Akers, M. Gassman, 2006, Hydraulic Power System Analysis”, Taylor & Francis

Teaching methods

Lectures. Classroom exercises with a software for the simulation of hydraulic components.

Assessment methods and criteria

Project thesis. oral test.

Other information

- - -