CHEMISTRY
cod. 1004014

Academic year 2011/12
1° year of course - First semester
Professor
Academic discipline
Chimica organica (CHIM/06)
Field
Discipline chimiche
Type of training activity
Basic
80 hours
of face-to-face activities
10 credits
hub:
course unit
in - - -

Learning objectives

The course aims at introducing the students to the language and the scientific method in the field of molecular sciences, providing the tools to understand the main characteristics and behavior of macroscopic systems, linked to the chemical principles that rule the molecular world, showing food and gastronomical applications.

Prerequisites

- - -

Course unit content

Part One (General and Inorganic Chemistry)
- The matter, atoms and molecules. Structure of the atom, protons, neutrons, electrons, atomic number, atomic weight. Atomic orbitals, electron distribution. Periodic properties: ionization energy, electron affinity, atomic radius. Ions.
- The chemical bond. Molecular orbital and valence bond theory. Hybrid orbitals. Lewis structures of neutral and ionic molecules, formal charges, resonance structures. Radicals. Properties of covalent bonds. Polarized covalent bonds and polarity. Ionic bonds.
- Chemical formulas and oxidation numbers. The most common inorganic compounds and their nomenclature: oxides, anhydrides, acids, bases, salts. The mole and its use in the calculations, density, percentage composition.
- Chemical reactions. Lavoisier's law, stoichiometric balance of the masses. Limiting reagent, introduction to the chemical equilibrium, yield of reaction. Reactions in aqueous solution, solvation, soluble and insoluble compounds. Reactions of double exchange, net ionic equations. Acids and bases according to Arrenhius and Brønsted, acid-base reactions, displacement reactions. Redox reactions and their balance.
- Thermodynamics. The forms of energy. First law of thermodynamics, enthalpy, heat of reaction. Entropy, second law of thermodynamics. Gibbs free energy
- Matter states. Gaseous state, Boyle's Law, Charles Law, state equation of ideal gases. Liquid state, intermolecular interactions, vapor pressure, boiling point, viscosity. Solid state, crystalline and amorphous solids. Phase changes and phase diagrams.
- Solutions. Dispersed phases: emulsions and suspensions, emulsifiers. Methods for measuring the concentration of the solutions: percent, molarity, molality. Solubility, temperature dependence. Multi-component mixtures and solutions: Raoult's law and Henry's law. Colligative properties: ebullioscopic raising and freezing lowering, osmosis.
- Chemical equilibrium. Equilibrium constants, equilibrium perturbation, Le Chatelier's law.
- Acid-base reactions. Definition of acidity and alkalinity according to Arrenhius and Brønsted-Lowry. Ionic product of water, pH. Strength of acids and bases, strong and weak acids and bases, Ka and Kb, pH of solutions of strong acids and bases. Estimation of pH of solutions of weak acids and bases. Basic and acid hydrolysis of salts, buffer solutions.
- Kinetics. Reaction rate, rate law. Effect of temperature, concentration, the collision theory. Arrenhius equation. Catalysts.

Part Two (Organic Chemistry)
- Organic compounds. Carbon hybridization, functional groups, common classes of organic molecules.
- Alkanes: structure, nomenclature, physical and chemical properties, conformations. Cycloalkanes. Reactivity of the CH bond: combustion, autooxidation, halogenation. Carbon radicals. Number of oxidation of organic compounds. Alogenoalkanes.
- Carboxylic acids: structure, nomenclature, acid properties. Amines: structure, nomenclature, base properties. Amino acids: acid-base properties, isoelectric point.
- Chirality. Relative and absolute configuration. Diastereoisomers, enantiomers.
- Alcohols: structure, nomenclature, physical and chemical properties, reactivity. The concepts of nucleophile and electrophile. Nucleophilic substitution reactions, Sn1 and Sn2 mechanisms. Carbocations. Elimination reactions, E1 and E2 mechanisms. Ethers. Thiols. Sulphides.
- Alkenes, structure, nomenclature and properties. Isomerism. Hydrogenation of the double bond. Mechanism of electrophilic addition to double bonds: addition of halogenhydric acid, water, halogens. Polymerization, synthetic and natural polymers. Dienes, the effects of conjugation. Alkynes.
- Aromatic compounds, aromaticity and Hückel rules. Heteroaromatic. Phenols and aromatic amines.
- Derivatives of carboxylic acids. Mechanism of nucleophilic acyl substitution. Esters: nomenclature and properties. Basic and acid hydrolysis. Fisher esterification. Amides: nomenclature and properties. Basic and acid hydrolysis of amides.
- Lipids. Structure and properties of fatty acids and triglycerides. Triglycerides formed by saturated and unsaturated fatty acids. Saponification, autooxidation, hydrogenation. Oxidative and hydrolytic rancidity.
- Peptides and proteins: structure, properties and classification. Proteins in food.
- Aldehydes and ketones: structure, nomenclature and physico-chemical properties. Mechanism of nucleophilic addition. Addition of water. Addition of alcohols: formation of hemiacetals and acetals. Addition of amines: formation of imines. Oxidation of aldehydes. Keto-enol tautomerism and aldol condensation.
- Carbohydrates. Saccharide structure, conformation in solution, mutarotation. Glucose, fructose, galactose. Glycosides. Oxidation of sugars, reducing sugars. Reactions with amines, the Maillard reaction. Thermal decomposition: caramelization reaction. Disaccharides: maltose, cellobiose, lactose, sucrose. Hydrolysis of disaccharides, inverted sugar. Polysaccharides: amylose, amylopectin, starch, glycogen and cellulose.

Full programme

- - -

Bibliography

Kotz, Treichel, Townsend –CHIMICA – EdiSES
Kelter, Mosher, Scott – CHIMICA (La scienza della vita) – EdiSES
Masterton-Hurley – CHIMICA - Piccin
Brown, Foote, Iverson, Anslyn - CHIMICA ORGANICA - EdiSES
McMurry - CHIMICA ORGANICA - Piccin

Teaching methods

Class lectures, class exercises

Assessment methods and criteria

Written and oral examinations

Other information

- - -