MAGNETISMO E SUPERCONDUTTIVITA'
cod. 1005451

Anno accademico 2013/14
1° anno di corso - Secondo semestre
Docente
Settore scientifico disciplinare
Fisica della materia (FIS/03)
Field
Attività formative affini o integrative
Tipologia attività formativa
Affine/Integrativa
52 ore
di attività frontali
6 crediti
sede: PARMA
insegnamento
in - - -

Obiettivi formativi

Conoscenze e capacità di comprendere:
Questo insegnamento si propone di fornire allo studente le conoscenze teoriche di base riguardanti diverse tematiche di magnetismo e la teoria BCS della superconduttività. Le teorie fisiche più rilevanti verranno apprese in termini di struttura logica e matematica, di evidenze sperimentali, di modellizzazione dei fenomeni fisici da esse descritte.

Competenze:
Lo studente dovrà acquisire la capacità di applicare le conoscenze così acquisite per analizzare i fenomeni magnetici e la superconduttività ed interpretarli sulla base di una formulazione matematica delle leggi fisiche.

Autonomia di giudizio:
Alla fine del corso, lo studente dovrà possedere gli strumenti per comprendere i principali fenomeni legati al magnetismo quantistico e alla superconduttività.

Capacità comunicative:
Lo studente dovrà possedere l’abilità di presentare in maniera chiara i concetti di base del magnetismo quantistico e della teoria BCS della superconduttività e le loro conseguenze sui fenomeni osservabili.

Prerequisiti

Sono richieste conoscenze di base di Fisica della Materia, Meccanica Quantistica e Fisica Statistica.

Contenuti dell'insegnamento

Il corso è diviso in due parti. Nella prima parte vengono affrontate diverse tematiche di magnetismo, mentre nella seconda parte viene affrontata la teoria BCS della superconduttività. In particolare gli argomenti trattati sono:

-Lo ione libero - Ione in un cristallo e teoria di campo cristallino.
-Operatori tensoriali irriducibili.
-Interazione di scambio diretto-Interazione RKKY-Interazione di superscambio.
-Molecole magnetiche-limite di scambio forte.
-Teoria di campo medio e onde di spin per materiali magnetici.
-Modello di Hubbard-modello di Stoner.
-Formula di Kubo-Funzioni di Green.
-Instabilità di Cooper-Origine dell'interazione attrattiva-Stato fondamentale BCS-Trasformazione canonica-Previsioni della teoria.

Programma esteso

- - -

Bibliografia

-Condensed Matter Physics by M. P. Marder, Wiley.
-Quantum Theory of Magnetism by W. Nolting and A. Ramakanth, Springer.
-Lecture Notes on Electron Correlation and Magnetism by P. Fazekas, World Scientific.
-Introduction to superconductivity by M. Tinkham, Dover Publications.

Metodi didattici

Proiezione di slides, calcoli alla lavagna e simulazioni numeriche.

Modalità verifica apprendimento

Esame orale sugli argomenti svolti nel corso. L'esame inizia con la discussione di un argomento a scelta dello studente. Questa parte ha un peso di circa 1/3 sulla valutazione finale. L’esame poi prosegue con domande sugli altri argomenti affrontati durante le lezioni.

Altre informazioni

- - -