SISTEMI COMPLESSI
cod. 1007292

Anno accademico 2017/18
1° anno di corso - Secondo semestre
Docente
Alessandro VEZZANI
Settore scientifico disciplinare
Fisica della materia (FIS/03)
Ambito
Attività formative affini o integrative
Tipologia attività formativa
Affine/Integrativa
60 ore
di attività frontali
6 crediti
sede:
insegnamento
in - - -

Obiettivi formativi

Lo studente al termine del corso:
Conoscerà diversi modelli di meccanica statistica di equilibrio e di non-equilibrio, imparando tecniche analitiche e numeriche per lo studio degli stessi modelli.
Saprà comprendere come questi possano essere utilizzati per studiare diversi sistemi sia in campo fisico che in applicazioni interdisciplinari in ambito biologico, sociale, economico ed informatico.
Saprà applicare le tecniche numeriche ed analitiche insegnate per analizzare i modelli di fisica statistica utilizzando, ad esempio, simulazioni numeriche.

Prerequisiti

- - -

Contenuti dell'insegnamento

Il corso prevede lo studio di sistemi di varia natura che presentano comportamenti complessi tipicamente legati alla presenza di un elevato numero di gradi di libertà. Saranno illustrati diversi modelli teorici e tecniche, sia analitiche che numeriche, con l'obiettivo di trovare le leggi ‛fenomenologiche' che regolano il comportamento globale di tali sistemi. Inizialmente discuteremo le proprietà di alcuni modelli puramente statistici, poi ci dedicheremo alle dinamiche stocastiche, infine tratteremo la tematica dei grafi e delle reti complesse. Saranno discusse applicazioni nel campo della fisica, della biologia, dell’epidemiologia dell'informatica e dell'economia. Data l'interdisciplinarietà e le molteplici ricadute applicative degli argomenti trattati, il corso è consigliato per tutti gli indirizzi.

Programma esteso

1 Meccanica statistica di equilibrio.
Richiamo di teoria degli ensemble statistici, campo medio e transizioni di fase, finite size-scaling cumulanti di Binder. Descrizione di alcuni modelli classici rilevanti per la loro fenomenologia e per gli aspetti applicativi: applicazioni interdisciplinari del modello di Ising, modello di Potts, modello p-spin, modello di Hopfield, modello XY (vortici), catene polimeriche, percolazione.

2 Dinamica
Richiami sul metodo Montecarlo e bilancio dettagliato. Master-equation e cammini aleatori. Moto browniano equazioni di Langevin e Fokker-Planck. Sistemi fuori equilibrio. Legge di Arrhenius per sistemi con barriere di potenziale. Teoria della risposta lineare dipendente dal tempo. Trasporto ed equazione di Einstein. Produzione di entropia in dinamiche dipendenti dal tempo. Subdiffusione nei continuous time random walks e superdiffusione nei Lévy walks. Dinamiche lente: crescita dei domini magnetici nel modello di Ising. Esponente di scala dinamico e transizioni di fase dinamiche.
Modelli puramente dinamici. Modelli SIS e SIR per la diffusione di epidemie. Contact process e percolazione diretta come paradigma delle transizioni di fase dinamiche. Approssimazione dinamica di campo medio. Voter model. Modello di sand-pile e criticità autorganizzata. Applicazione del campo medio dinamico a modelli quantistici: equazione di Gutzwiller ed equazione di Schroedinger non lineare per lo studio di bosoni interagenti su reticolo. Sincronizzazione e modello di Kuramoto. Dinamiche di reti neurali.

3 Grafi e network complessi
Definizione di grafo. Elementari proprietà dei grafi: grado, raggio, matrice di adiacenza. Modelli lineari definiti su grafo: oscillatori armonici, reti elettriche, e cammini aleatori. Dimensione frattale e di dimensione spettrale. Diffusione anomala su frattali. Network complessi, small world e scale free. Modelli di Watts-Strogatz e di preferential attachment. Studio di alcuni modelli statistici su network complessi: percolazione e modelli epidemici.

4 Applicazioni.
Per i vari modelli e problematiche considerati illustreremo applicazioni sia in ambito fisico che interdisciplinare in campo biologico, epidemiologico, informatico e sociale.

Bibliografia

Appunti del corso e testi da concordare.

Metodi didattici

I vari argomenti verranno affrontati principalmente tramite lezioni in aula. Inoltre, agli studenti verrà proposto di effettuare una simulazione numerica al calcolatore su un argomento a scelta, in modo da familiarizzare in modo più approfondito con le tecniche numeriche e analitiche spigate a lezione. L’insegnante è disponibile al di fuori dell’orario di lezione per discutere di eventuali criticità incontrate nella svolgimento delle simulazioni numeriche.

Modalità verifica apprendimento

L’esame consiste in una prova orale su due punti. Prima lo studente illustrerà i risultati della simulazione numerica preparata durante il corso avvalendosi di slide al computer (15 pts). Poi ci sarà una breve interrogazione orale focalizzata sui concetti chiave del corso (15 pts).

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti

E. segreteria.scienze@unipr.it
 

Servizio per la qualità della didattica

Manager della didattica:
Dott.ssa Giulia Bonamartini
T. +39 0521 904157
E. servizio smfi.didattica@unipr.it
E. del manager giulia.bonamartini@unipr.it

Presidente del corso di studio

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Delegato orientamento in ingresso

Prof. Luca Lorenzi
E.  luca.lorenzi@unipr.it

Delegato orientamento in uscita

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Docenti tutor

Prof.ssa Alessandra Aimi
E. alessandra.aimi@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

Delegati Erasmus

Prof. Leonardo Biliotti
E. leonardo.biliotti@unipr.it

Referente assicurazione qualità

Prof.ssa Alessandra Aimi
E. alessandra.aimi@unipr.it

Tirocini formativi

Prof. Costantino Medori
E. costantino.medori@unipr.it

Referente per le fasce deboli

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Studentessa tutor

Dott. Jacopo Borsotti
E. jacopo.borsotti@studenti.unipr.it