PHYSICAL CHEMISTRY
cod. 16582

Academic year 2022/23
2° year of course - Second semester
Professor
- Carlotta COMPARI
Academic discipline
Chimica fisica (CHIM/02)
Field
Discipline chimiche
Type of training activity
Basic
72 hours
of face-to-face activities
9 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

The aim of the course is to provide the students, by means of models peculiar of physical chemistry, with the thermodynamic concepts for knowledge and understanding of the energy interconversion in biological systems, the interaction of ligands with biological macromolecules and biological transport phenomena. Colloid chemistry, foundation of health products will be presented. The chemical-physical bases and methodologies for studying, designing and developing non-viral vectors will be presented., with particular emphasis on new cationic surfactants as possible mediators for gene delivery.
LEARNING RESULTS
At the end of the course the student will have assimilated the main themes of Biologica Physical Chemistry demonstrating knowledge and understanding of the chemical-physical methods for the study of biological systems. The student will be able to identify and apply the appropriate model to each system and to calculate the thermodynamic parameters of the phenomenon observed.
At the end of the class, the student must be able to show:
- Knowledge and understanding
Students will acquire basic knowledge of the concepts and models of modern physical chemistry. Furthermore, they will learn to analyse the basic molecular transformations and processes which are at the basis of bilogical systems .
- Applying knowledge and understanding by applying the knowledge to the study of chemical processes in pharmaceutical area by means of chemico-physical techniques, in order to verify their feasibility and optimization;
- Communication skills by using the specific language of the Physical Chemistry and the correct terminology;
- Making judgements by evaluating with a critical attitude the soundness of the chemico-physical models used in the analysis of the experimental data;
- Learning skills
Applying the acquired knowledge will have to demonstrate that they have developed problem solving skills.

Prerequisites

Knowledge of General Chemistry, Physics and Mathematics.

Course unit content

The first part of the course is devoted to the equilibrium thermodynamics with special reference to biological systems.
The second part deals with non-equilibrium thermodynamics and transport processes.
The third part is connected with the colloidal systems and with their stability, particularly as far as the pharmaceutical and food systems are concerned.

Topics:
• Equilibrium thermodynamics applied to chemical, biological and food systems
• Changes of state: physical transformations of pure substances.
• Changes of state: physical transformations of simple mixtures.
• Solutions of macromolecules.
• Equilibria of chemical reactions.
• Non-equilibrium thermodynamics and transport processes.
• Bioenergetics.
• Intermolecular forces.
• Colloid Chemistry.
• Non-viral vectors for gene therapy.

Full programme

Equilibrium thermodynamics applied to chemical and biological systems with a statistical thermodynamics outline. Variables and state functions. The laws of thermodynamics. The temperature and pressure dependence of thermodynamic quantities. Thermochemistry. Calorimetry.. Outline of statistical thermodynamics. The molecular interpretation of thermodynamic quantities. Molecular partition function. Maxwell’s equations. Exercises.
Changes of state: physical transformations of pure substances. Phase diagrams. Clausius-Clapeyron equation. Gas-liquid phase transition and critical phenomena. The principle of corresponding states. Gibbs phase rule
Changes of state: physical transformations of simple mixtures. Open systems and partial molar quantities. Ideal and real solutions. Raoult and Henry laws. Fugacity and activity. Water activity in foods. Regular solutions. Ideal mixing and excess functions. Phase equilibria in binary systems. Fractional distillation. Azeotropes, eutectic, partially miscible liquids, binary mixtures compounds forming. Solvent chemical potential. Colligative properties. Molecular weight measurements. Membrane equilibria. Solutions of macromolecules. Dialysis equilibrium. Donnan equilibrium.
Equilibria of chemical reactions. Gibbs free energy and equilibrium constant. Activity and ionic strength. Statistical Thermodynamic interpretation of equilibria in solution. The Bjerrum function. Distribution diagrams. Binding curves. Cooperativity.
Electrochemistry. Electrochemical cells. Electrodes. Nernst equation. Standard reduction potentials. The potentiometer. Electrolyte concentration cells. Nerve stimulus.
Bioenergetics. Active and passive processes. Transport phenomena: passive and active transport. Exergonic and endergonic reactions. Coupled reactions. High energy compounds. Scale of transfer potentials.
Non-equilibrium thermodynamics and transport processes. Force and flow. Phenomenological equations. Curie theorem. Prigogine theorem. Onsager law. Dissipation function. Steady state concept. Mobility of the ions in solution. Electrophoresis. Diffusion. Sedimentation. Viscosity.
Chemical kinetics. The rate of chemical reactions. Stoichiometry, order and , molecularity. 1st and 2nd order reactions. Half-life time. Arrhenius equation. Catalysis. Enzyme kinetics. Fast reactions.
Intermolecular forces. Van de Waals forces. Dipole and induced dipole. Potential energy. Hydrogen bond. Hydrophobic interactions. Partition coefficient.
Colloid, surface chemistry and biopolymers. Definition and classification. Surface tension. Intermolecular forces in colloidal systems. DLVO theory. Structure and classification of surfactants. Micelle formation. Solid-gas, liquid-gas, liquid-liquid, solid-liquid interfaces. Adhesion and cohesion work. Emulsions. Emulsifiers and stabilizers in foods. Microemulsions. Liquid crystals. Langmuir-Blodgett films.

Bibliography

P. W. Atkins, J. De Paula, Chimica Fisica Biologica, vol.1 e 2, Zanichelli, Bologna, 2008
P. W. Atkins, J. De Paula, Chimica Fisica, quarta edizione italiana, Zanichelli, Bologna, 2004.
P. W. Atkins, R.S. Friedman, Meccanica Quantistica Molecolare, Zanichelli, Bologna, 2000

Teaching methods

The course will be held through lectures to Students in the classroom (“in presenza”).
Teaching activities will be performed principally by means of taught lessons with the aid of computer ppt presentations, available to the students before classes on the Elly platform. Lectures will be implemented by means of problem solving and “question time” like activities in order to maximize the understanding level of the students.
During the oral lesson will present the basic concepts of physical chemistry with particular emphasis on pharamaceutical applications.

Assessment methods and criteria

The written examination will have to be passed during normal examination sessions.
Questions will have the purpose of establishing the level of knowledge and understanding of the course content, in relation to the educational goals.
During the course, two written in itinere tests will be proposed.
Students with SLD / BSE must first contact Le Eli-che: support for students with disabilities, D.S.A., B.E.S. (https://sea.unipr.it/it/servizi/le-eli-che-supporto-studenti-con-disabilita-dsa-bes)

Other information