PHYSICS 1
cod. 1000976

Academic year 2015/16
1° year of course - Second semester
Professor
Academic discipline
Fisica sperimentale (FIS/01)
Field
Discipline fisiche
Type of training activity
Basic
104 hours
of face-to-face activities
12 credits
hub: PARMA
course unit
in - - -

Learning objectives

The objectives of the Course are:
• to provide a conceptual understanding of the fundamental laws of classical Mechanics, including systems dynamics, and of Thermodynamics, with particular focus on kinematics, Newton’s laws and conservation principles;
• to develop some understanding of main aspects of the dynamics of rigid bodies, gravitation, oscillatory and wave phenomena and of the Theory of Special Relativity;
• to enable the student to learn, especially from a phenomenological point of view, the mechanics of continuum systems (fluids and elastic properties of solids), the thermology and the thermodynamics.

The experimental method is the basis for understanding the behaviour of systems and phenomena described above. The most important physical theories will be learned in terms of logical and mathematical structure and experimental evidence. At the end of the course, the student will be able to assess similarities and differences between physical systems, methodologies to be applied, approximations and mathematical methods to be used and must have acquired the ability to apply knowledge and understanding by solving exercises and problems.
The aim of the course is, from one hand, to give the analytical instruments that allow describing the dynamics of the simplest mechanical and thermodynamical systems and examining their qualitative behaviour, even by the development of problem solving skill. On the other hand, the course will provide the conceptual basis of the Newtonian formulation of Mechanics, which is introductory to the formalizations described in more advanced courses.

Prerequisites

- Working knowledge of high school level algebra and trigonometry;
- Differential and integral calculus
- Principles of analytical geometry and of elementary vector analysis

Course unit content

Part I

1. Mechanics: introduction and vector calculus
2. Kinematics of material Point: one-dimension
3. Dynamics of material point: Force and Newton’s laws
4. Kinematics of material Point: two- and three-dimension
5. Applications of Newton’s laws
6. Relative motion
7. Work and mechanical Energy

Part II

8. Dynamics of the systems of material points I
9. Dynamics of the rigid body I
10. Dynamics of the rigid body II: statics and rolling motion
11. Dynamics of the systems of material points II: angular momentum
12. Energy conservation
13. Collisions

Part III

14. Gravitation: phenomenology and Newton’s law
15. Statics and dynamics of ideal fluids
16. Oscillatory phenomena
17. Thermology - Ideal gases
18. Heat and first law of thermodynamics
19. Second law of thermodynamics and Entropy

Part IV (only for students of the Degree in Physics)

20. Additions on the dynamics of the systems and rigid body
21. Elastic properties of solids
22. Properties of real fluids
23. Wave phenomena: elastic waves
24. Additions on the properties of gases and thermodynamics
25. Special relativity theory

Full programme

- - -

Bibliography

Suggested textbooks

Elementi di Fisica – Meccanica - Termodinamica
P. Mazzoldi, M. Nigro e C. Voci
II edizione
Edizioni Scientifiche ed Universitarie (EdiSES), Napoli, 2008
ISBN: 9788879594189

Fisica Generale: Meccanica e Termodinamica
S. Focardi, I. Massa, A. Uguzzoni e M. Villa
II edizione
Casa Editrice Ambrosiana (CEA), Milano, 2014
ISBN 978-8808-18215-9

FISICA 1
Meccanica - Acustica - Termodinamica
R. Resnick, D. Halliday, K. S. Krane
V edizione
Casa Editrice Ambrosiana (CEA), Milano, 2003
ISBN 978-8808-08611-2

Note on textbook choice

The three textbooks are obviously alternative, although in part complementary. The students must make the choice based on personal preferences and previous preparation: the Resnick is less formal and with a ”tutorial" style, with many exercises and examples; the Focardi is the most formally accurate; the Mazzoldi, while presenting examples and exercises, is rather synthetic though preserving a formal exactness.

Teaching methods

Teaching methodology:

Frontal lesson with help of audio-visual multimedial instruments. The slides of the lectures will be available on the didattica.unipr.it course web pages.
A part of the course will be devoted to the solution of problems and exercises, under the supervision of the teacher. A selection of exercises and problems will be posted for each topics on the didattica.unipr.it course web pages.

Assessment methods and criteria

Evaluation methods:

The evaluation is based on mid-term exams (in itinere evaluations) in written form and a final exam in oral and (eventual) written form. A provisional grade will be proposed to the students if the comprehensive grade of the 4 mid-term exams is above a specific threshold (average grade equal to or higher than 18/30). In order to sustain the oral exam, which will aim to assign the final grade, students must enrol for it (registration to the oral exam on the ESSE3 web platform). The exemption from the written test examination and the assigned provisional grade will retain their validity for all the exams of the 2015/16 academic year (from June 2016 to February 2017).
In the event that a student is not able to participate in one of the four written exams but still has an average rating above the threshold on the remaining 3, he will be exempted from the written exam but the oral examination will include the part of the program (theory and exercises) corresponding to the missed test.

The final exam, in written and oral form, is mandatory for the students having an insufficient grade of mid-term exams or do not giving the intermediate exams. In such a case will be considered eligible for the oral exam students who reach the written test examination an assessment equal to or greater than 18/30.

The 4 written mid-term exams will require the solution of some exercises and problems relating to specific course topics and the answer to some questions on the theoretical aspects of these topics. The written final exam will have a similar structure but problems and questions will cover all the topics of the course program. The oral final exam will consist of the discussion of the carried out written exams (final or mid-term exams) and deepening of theoretical arguments chosen in the whole program.

Other information

Office hours: Wednesday, 10.30-11.30 or upon appointment