CONSTRUCTION TECHNIQUES
cod. 01026

Academic year 2015/16
3° year of course - First semester
Professor
Academic discipline
Tecnica delle costruzioni (ICAR/09)
Field
Ingegneria civile
Type of training activity
Characterising
84 hours
of face-to-face activities
12 credits
hub:
course unit
in - - -

Learning objectives

Knowledge and understanding:
At the end of this course the student should know elementary analysis methods to evaluate stress and strain states of the structures. Moreover, he should gain understanding of the fundamental principles of the design methods and evaluation of structural reliability, as well as instruments and techniques to draft the structural design.

Applying knowledge and understanding:
The student should be able to compute actions on constructions and resultants stress and strain fields in the structure, to design reinforced concrete and steel structural elements, including foundations and supports, on the basis of design codes. Finally, the student should be able to draft design results with relative details.

Making judgments:
By the end of the course, the student should be able to evaluate, with critical mind, the good choice for the structural element design and its feasibleness.

Communication skills:
The student should be able to clearly present the results of the design activity by means of tables, charts and drawings.

Prerequisites

Knowledge of basic concepts on differential equations, stress analysis, strength of material and theory of elastic beams.

Course unit content

Action on structures: general actions, densities, self-weight, imposed loads for buildings. Wind action and snow action. Seismic action.
Structural analysis of frames. Deflection of beams. Principle of virtual work. Mohr’s theorem. Statically indeterminate beams. Flexural deformability and stiffness of a beam. Shear deformability and stiffness of a beam. Statically indeterminate frames. Fixed-joint and sway frames. Force method. Displacement method.
The foundation beam resting on a cohesionless elastic soil (Winkler ground).
Design methods. Design at the Allowable Stresses and at the Limit States.
Reinforced concrete structures. Material properties. Members subjected to axial load, to flexure, to combined axial load and flexure (interaction diagrams). Instability. Members subjected to Shear and Torsion. Cracking and deformation.
Steel structures. Material properties. Tension members, compression members and buckling. Latticed columns. Combined bending and axial load. Bolted and welded connections.
Practices lectures. Actions for use in design. Design of slabs, beams, columns, corbels. Design-code recommendations.

Full programme

- - -

Bibliography

Lecture notes available by teaching (All the teaching material is available via the portal didattica.unipr.it).

Additional books:
- R. Calzona, C. Cestelli Guidi. “Il calcolo del C.A.”. Hoepli Editore, Milano, 2007.
- G. Ballio, F.M. Mazzolani. “Strutture in acciaio”. Hoepli Editore, Milano, 1987.
- G. Toniolo. “Calcolo strutturale. I telai”. Zanichelli Editore, 1990.
- G. Toniolo, M. Di Prisco. “Cemento armato. Calcolo agli stati limite”. Zanichelli Editore, 2000.

Teaching methods

Slides will be used to convey the most important messages of the theory lectures. Practical lectures will perform by design examples on reinforced concrete and steel elements, as well as drawing construction details, under the guide of tutors.

Assessment methods and criteria

The examination is based on a written test concerning stress analysis of frame structure and an oral exam concerning design models and codes. The examination is weighted as follows: 40% written test (appropriate approach of analysis, correctness and clarity in presenting the results); 60% oral exam (theory questions, application of theory to design problems and presentation ability).

Other information

Lecture attendance is highly recommended.